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TECHNICAL PAPER

SOLUTION OF THE ANGLES-ONLY SATELLITE TRACKING PROBLEM

INTRODUCTION

The determination of the orbit of a satellite vehicle or ballistic missile is obviously of great

practical importance. In the usual case, the azimuth, elevation, range, and range-rate of the target are

measured from an Earth-fixed radar site. When range and range-rate are not available, the determination
of the orbit from the azimuth(s), elevation(s), and the time(s) of the observation is referred to as the

"angles-only problem."

A good summary of this problem is treated in reference 1. In that source, it is pointed out that the
problem was solved by Gauss, Laplace, and Escobal. These solutions seem to be far better known

among astronomers than among aerospace engineers.*

In the present report, another solution is derived which is particularly well suited to numerical

calculations. It is shown that all of the orbital elements (semi-major axis (a), eccentricity (e), argument
of perigee (_), inclination (/), and longitude of the ascending node (_)) can be derived from five

measurements of the azimuth (and the times of observation), or five measurements of the elevation (and

the times of observation). Once these elements have been isolated, the epoch can be derived from a
given time measurement.

An advantage of the present formulation is that it can be readily extended to the case of an

observer aboard a second satellite rather than an Earth-fixed observer. Since only line-of-sight angles
would be required to determine the orbit of a second satellite, the technique could be used to eliminate

range and range-rate hardware that is presently required for rendezvous. This option will be treated in a

future paper.

THE DRIVER PROGRAM

In the case of an actual radar installation, the azimuth and elevation angles, as well as the time of

the observations, would be recorded once a target is acquired. Since this report deals with theoretical

sightings rather than actual observations, it is necessary to build a driver program to simulate what a real

radar station would observe. To that end, a vehicle having arbitrary orbital elements is assumed and the

details of the sightings from a general configuration are derived. From a general configuration, specific
orbital elements are used for simulation. Once the elevation, azimuth, and time are calculated, the orbital

parameters are hidden from the isolation scheme. The isolation then has to rederive a complete

specification of the orbit from the table of elevation angle versus time (or the azimuth versus time).

Since a ballistic missile that impacts the Earth is obviously in a "terminated" orbit, the same theory

applies in either case, i.e., one can track an incoming missile using the present theory. For the ballistic

missile case, drag would be a significant factor, however. Drag is not included in the present report.

* The author wishes to thank Dr. John Hanson, EL-58, MSFC, for pointing out this literature on this subject.



Let (7,7, k) describe an Earth-centered inertial coordinate system and locate a tracking station by

the polar coordinates (Ro, ¢Po, 0o) (fig. 1). We explicitly recognize the Earth's rotation by setting

d?o = dPo(t). At the tracking station, a spherical coordinate system is constructed via the unit vectors

(a r, a o, a_)), Note that this coordinate system is modified from the usual convention in that the a o points
due south along the meridian rather than the conventional practice of orienting it to the north. The target

is located, relative to the tracking station by a distance, p, and two angles, the azimuth o_, and the

elevation angle, ft.

The unit vector transformation is:

fir = cos 0o "cos ¢o "7+cos 00 .sin ¢o-7+sin 0o .2,

fie = sin _o .7+cos _o "7,

a o = sin 0o .cos ¢o .7+sin 00 .sin ¢o .7--cos 00 .2,

along with the vector from the center of the Earth to the radar station,/_o, as

whereRo=[_o[.

/_o = Ro.cOs Oo .cos ¢o .7+R_;cos Oo .sin q)o .7+Rdsin Oo .k ,

In the local coordinates of the radar station, the p vector is given by

/7 = p .(sin fl .ar+COS fl .sin a.a_ +cos fl .cos a.ri0),

where p = I/_ l"

(1)

(2)

Inserting the expressions for fir, a¢, and rio into the expressions for fi, one finds

ff = p .[(sin fl .cos 0o -cos tpo-cos fl -sin a-sin _Po+cos fl .cos a.sin 0o .cos ¢o ).7

+ (sin fl-cos 0o .sin _Po+cos fl .sin a.cos ¢o +cos fl .cos a .sin 0o .sin ¢o )'7

+(sin fl .sin 0o -cos fl .cos a.cos 0o ).2] (3)

Define a vector _ from the center of the Earth to the satellite. For reference 2, one can write _ in

terms of the inclination,/, the right ascension of the ascending node, _, the argument of perigee, zo, and

the true anomaly, f, as

? = x'7+y'7+z"k = r.[cos (f+_)-cos d-sin (f+_).sin _.co s I].'_

+r-[cos (f+D).sin o_+sin (f+D)-cos _.cos 1]'7

+r.sin (f+D).sin 1.2, (4)

where r = (see fig. 2). Also, one can write

r = a.(1-e2)/(l+e.cosf) = p/(l+e.cosf), (5)
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wherea is the semi-major axis of the orbit and e as the eccentricity and p = a- (l-e2).

Vectorially,

=/_o+/_ • (6)

Equating the components of equation (6) from equations (5), (3), and (1),

p-(sin fl .cos 0o .cos ¢o --cos fl -sin a.sin ¢o +cos fl -cos a.sin 0o .cos ¢o )

= r.[cos (f+_).cos 62-sin (f+_).sin 62.cos I]-Ro.COS 0o -cos $0 , (7)

p .(sin fl .cos 0 o .sin ¢o +cos fl .sin a.cos ¢o +cos fl .cos a.sin 0o .sin ¢o )

= r.[cos (f+_).sin 62+sin (f+_).cos 62.cos I]-R 6cos 0o .sin $0 , (8)

p.(sin fl.sin 0o -cos fl.cos o¢-cos 0o ) = r.sin (f+D).sin l-Rdsin 0o . (9)

Taking the square root of the sum of the squares of equations (7), (8), and (9) gives

p = (r2+R2o-2.r.R _;{[cos (f+_).cos 0o .cos (62-00)-sin (f+_)]. [cos 0o .cos/-sin (62-00)

-sin/.sin 0o ]})1/2. (10)

Although the preceding equations can be solved directly for a and fl, a more subtle approach

yields additional quadrant information that can be valuable during numerical calculations. To this end,
one first calculates (8).cos _o-(7)-sin q_oto get

p-cos fl.sin o_= r.[cos (f+_).sin (62-$0)+sin (f+_).cos/.cos (62-$0)] . (1 1)

Next, calculate (7).cos $o+(8).sin ¢o to yield

p .(sin fl .cos 0o +cos fl .cos a-sin 0o )

=r.[cos (f+_).cos (62-$0)-sin (f+_).cos/.sin (62-$o)-Ro cos 0o]. (12)

From (12).sin 0o-(9).cos 0 o one has

p.cos fl.cos a= r.{cos (f+_).cos (62-$0)-sin 0o

-sin (f+_)-[cos/.sin (62-$0).sin 0o +sin/.cos 0o ]} . (13)

Now, divide equation (1 1) by equation (13) and obtain the formula for the tangent of a as

tan o_= [cos (f+_).sin (62-$0)+sin (f+_).cos/.cos (62-$0)]/{cos (f+_).cos (62-$0).sin/9 0

-sin (f+_).[cos/-sin (62-$0).sin 0o +sin/.cos 0o ]} . (14)

Equation (14) may be rewritten in many forms, with one of the more useful being



tan a= [sin (62-$0)+tan (f+D).cos/.cos (62-$0)]/(cos _ .{cos (62-$0).tan 0o

-tan (f+_).[cos/.sin (62-$0).tan 0o +sin I] }). (15)

In equation (14), one can separately interrogate the numerator and denominator (interpreted as

sin oc and cos a) to obtain the needed quadrant information on _ .t

The elevation, fl, can be obtained in several ways. One such method would come from

multiplying equation (12) by cos 0 o and equation (9) by sin 0 o and adding to obtain

p.sin fl = r.{cos (f+_).cos (62-$0).cos 0o -sin (f+_).[cos/.sin (62-$0).cos 0o

-sin/-sin Oo]}-Ro. (16)

Squaring and adding equations (1 1) and (13) yields a formula for cos/3, but this process destroys

information. Dividing equation (15) by that equation for cos /3 will yield a tangent formula which

involves r and Ro but not p.

Another approach to determine/3 is simply to utilize equation (10) to determine p and then use
either equation (1 1) or equation (13) to obtain /3 as an arc cosine. Equation (1 1) would be greatly

preferred since cos o_will usually vanish during a satellite pass.

The magnitude of the radius vector, r, which appears in many of the above equations involves

the semi-major axis, a, and the eccentricity, e. If one has full knowledge of the orbital elements a, e,/,

m, and 62, and if one also knows the epoch (or a related time point), one can now obtain the values of p,

a, and/3. The time reference serves to determine the true anomaly, f, and the position of the observation

site, since _o = _o(t).

For given values of the orbital elements and epoch (needed for r and ¢o), the path of computation

is now clear. Equation (10) yields the values of p, and equation (15) can be solved for a. Once p and tz

are known, equation (1 1) provides the value of/3.

It is apparent that not all values of the epoch will yield values of (p, a,/3) which correspond to

physical data that could be recorded at a given observation site. Subsidiary conditions must be imposed

on the epoch (as well as on 190 ) in order to guarantee that the satellite is above the horizon of a ground

plane which is tangent to the site. ("Over the horizon radar" is not considered here, but such a device

could easily be incorporated into these equations.) Physically, apparition of the target is expected when
/3 = 0 and occultation when/3 = z. These conditions will be fulfilled if

P'/_o = 0.

Dotting equation (1) with equation (3) gives

cos (f+_).cos (62-¢o)-cos Oo-Sin (f+_).[cos/.sin (62-_o).COS Oo-Sin I -sin 0ol = Ro/r. (17)

This equation is time dependent through the variables f, r, and $o. In order to recognize the explicit time

dependence of the longitude of the observation site, write

_o _ _o +_.t. (18)

t The author wishes to thank Dr. Larry Mullins, MSFC, NASA, for pointing out the existence of this formula.



Sincethe true anomaly,f, is time dependent, r must be expanded by equation (5). In terms of the

eccentric anomaly, E,

r = a.[1-e.cos (E)]. (19)

The eccentric anomaly is related to the time by Gauss' equation (zero referenced to the time of perigee

passage) as

t= (_) -(_-e.sin E), (20)

and to the true anomaly, f, via

f = 2.tan -1 {_/[( 1+e)/( l-e)]. [tan (F_]2)] } . (21)

Since we are in the driver program, it is assumed that the orbital elements are all known. One

must isolate a value of the time such that equation (17) is satisfied, along with equations (18) through

(21). Since no useful analytic solution exists even for equation (20), there is little hope of solving
equation (17) analytically. For this reason, a Newton iteration was developed that defined

H = cos (f+D).cos (_-_).cos 0o -sin (f+D).[cos/.sin (_-0o).cos 0o

-sin/.sin Oo]-R fir, (22)

in accord with equation (17). To isolate a zero of H, the iterator requires that one also know OH�at.

OH�at =-{sin(f+D).cos (_-_o).cos 0o +cos (f+N).[cos/.sin (d-So).cos 0o

where

and

- sin/-sin 0o ]}-_/r2-{cos (f+D).sin (o_-0o).cos 0o

+sin (f+N)-[cos/.cos (o_-q_o)-COS 0o] }. c_e+(Ro/P).e, sin f. _/r 2 ,

Of�at = ff Lu "a'(1-e2)]/r 2 = _/r 2,

O/at(1/r) = -(e/p).sin f . (p_/_.p)/r 2

(23)

have been used.

Although the use of equations (22) and (23) can isolate the apparition and occultation of the

target, it is convenient to employ approximate calculations to estimate those times as starting values for

the Newton iteration. This can be conveniently done if one assumes (here) that ¢ is zero, but allowfto

vary in accord with Keplerian dynamics.

To approximate the apparition and occultation of the target, from equation (13), one defines

x0 = cos (o'2-0o)-cosOo, (24)

X 1 = [cos/-sin (_-_).cos 0o -sin/.sin 0o ] , (25)

so that equation (13) can be written as

X0.cos (f +_))-X 1.sin (f +D)-Ro/r = O. (26)



Expandingthedoubleangleformulasin equation(22),andabbreviating

X 2 = X0.cos m-Xl.sin m,

X 3 = X0.sin m+Xl.COS m,

allows equation (22) to be written as

gives

(27)

(28)

X2.cos f-X3.sin f-Ro/r = 0. (29)

Inserting r from equation (5) into equation (29) and cross multiplying by the denominator of r

Defining the variable 7/by

and _ as

cos f.(X2-Ro.e/p)-sin f.X 3 = Ro.e/p.

7/= tan -1 [X3/(X 2 -Ro.e/p) ],

= cos -1 (Ro.e/{p.4[X32+(X2-Ro.e/p) 2] }),

allows one to write equation (30) as

(30)

Equation (29) has two solutions, either

(31)

or

(32)

cos (f+O) - cos (33)

f = _-r/, (34)

f = 2n:-(_ +7/). (35)

Either the solution of equation (34) or the solution of equation (35) will correspond to apparition

on a nonrotating Earth; the other will correspond to occultation. Although Gauss' equation assumes that

the initial time point occurs at perigee, it is not difficult to introduce a false time reference of zero at

apparition by defining this point as to and then writing all time values, t, as t-to. Once the time of

apparition has been isolated, this time can be used as a starting point for the equations since the
calculation starts at that instant. The second solution forf(which could be the solution of either equation

(34) or (35)) then supplies a starting value for the Newton iteration of equation (22) so that the method

will converge on occultation rather than apparition.

An orbital table can now be produced by choosing an arbitrary number of points between the fo

(apparition) and theff (occultation). Since eachfand the orbital elements are known, one can specify all
the orbital parameters at these points. Table 1 shows the results of such a procedure for 15 points on a

typical orbit. The orbital elements were arbitrarily taken as a = 7,420 km, e = 0.1, .zo = 25 °, I = 35 °, and

o_ = 33°; q_o was taken as 77 ° and 0o as 28.5 °, and the Earth's rotation rate, q_, was 2rd(24.3,600).

Apparition occurred at fo = 8.481° (122.153 seconds past perigee), and occultation occurred at

ff = 50.855 ° (749.288 seconds past perigee). The remaining entries of table 1 were calculated by the use



of equations(5) for r, (10) for p, (15) for c¢, and (1 1) for ft. _ can most easily be obtained from equation

(1 9). The equations that were used to compute the values of the orbital angles ¢ and 0 are from standard
celestial mechanics

¢ = tan -1 { [tan (f+_).cos/+tan 62]/[1-tan (f+_).cos/.tan 62] } , (36)
and

0 = tan -1 [tan/-sin (t/_-62)]. (37)

It is interesting to determine how large fl can become in the field of view. This can be done by

requiring that Off�Of= 0, and then solving for the corresponding value off. When this value off is

inserted into equation (1 1), the maximum value of fl will be found. If one uses equation (1 1), that

procedure is algebraically rather messy. It is better to proceed by abbreviating

X = cos (f+_)-cos (62-q_o)-cos 0o -sin (f+E0.[cos/.sin (62-00) -cos 0o

-sin/.sin 0o ], (38)

so that equations (10) and (1 1) can be written, respectively as

p = _/(r2+R2-2"r'Ro'X)
(39)

sin fl = (r.X-Ro)/p = (r'X-R°)/_/(r2+R2-2"r'R°'X), (40)

which immediately yields

tan fl = (r.X-Ro)/[r._(1-X2)] (41)

If we now take the derivative of (4 1), equate Off�Of to zero and clear, we find that the requirement for fl
to be a maximum is

R o. (1 -X 2). (_r/_f)+r. [r-Ro.X]. (_X/Of) = 0. (42)

From equation (1 5), we have

_r/_f = r2e-sin f/p, (43)

while equation (34) gives

3X/Of = -sin (f+E0.cos (62-q_o).cos 0o -cos (f+_).[cos/.sin (62-00).cos 0o

-sin/.sin 0o ] . (44)

Taking (34).cos (f+E0-(44).sin (f+_) gives an equation which can be solved for OX/_f as

3X/Of = X.cot (f+_)-cos (62-¢0).cos 0o .csc (f+_) . (45)

Inserting equations (1 5), (43), and (45) into (42) gives, finally,

X2! [e.cos _'-I-cos (f+_)]-X. [cos (62-_).cos 0o -(1 +e.cos f)+(P/Ro).COS (f+_)]

+[(P/Ro).COS (62-_).cos 0o +e.sin f-sin (f+_)] = 0. (46)
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Equation (46) is cubic in the trigonometric functions of f. Even if one substitutes
sin 2 f---_ 1-cos 2 f, the residual sinfterms will require an additional squaring operation, so the best that

we can hope for is a sixth order equation in cos f. This virtually precludes an analytical solution for f, but

numerical iteration works very well. For a numerical iteration, it is easier to use equation (42) (along

with equations (38), (43), and (44)) rather than equation (46) (along with equation (38)). Oncef has been
isolated, the maximum value of/3 can be obtained from equation (41).

A far easier question is to determine whether or not/3 = n:/2 in the viewing field. From equation

(41),/3 can be n:/2 only if X = +1. Using equation (38), this requirement implies that

Setting

cos (f+_).cos 0o .cos (62-q_o)-Sin (f+D). [cos 0o .cos/-sin (62-00)

- sin/-sin 0o ] = +1. (47)

tan 2= [cos 0o -cos/-sin (62-00)-sin/.sin 0o ]/[cos 0o .cos (62-00)1

= cos/.tan (62-00 )-sin /.tan 0o .sec (62-00) , (48)

then, using spherical trigonometry,

tan 2= cos/.tan (62-00 )+sin /.tan /-tan (62-0o) = tan i62-00 )-sec I. (49)

Equation (47) can now be written as

cos (f+_).cos 2-sin (f+_)-sin ;L= +1 ,
or

cos (f+_-_,) = +1 . (50)

Thus,/3 will achieve an angle of n:/2 (or 3n:/2) if either of the true anomalies

f =-tan -1 [tan (62-00)-sec I]-D, (51)
or

f = _r-tan q [tan (62-00)-sec I]-_, (52)

fall between apparition and occultation.

From equation (14), an additional datum is available. It is interesting to determine the value of

the true anomaly, f, which results in a = 0. For this condition, equation (14) requires that

sin (62-00)+tan (f+_).cos/.cos (62-00) = 0,
or

tan (f+_) = -sec/-tan (62-00) . (53)

If _ is now taken to be the longitude of the satellite (as opposed qo, the longitude of the tracking station)

a standard equation from celestial mechanics gives

tan (f+_) =-sec/.tan (62-q_) . (54)



For equations(52) and (53) to hold simultaneously,one must thenhave ¢ = ¢o asthe condition for
ct = 0. At this time

f = -{tan -1 [sec/.tan (_-_)]+_} . (55)

If the satellite was observed exactly at a = 0 (and the associated time), it would be possible to use this

datum to eliminate one orbital element in terms of the remaining four. However, nonlinearities probably
make such a procedure more trouble than it is worth.

THE SOLUTION OF THE ANGLES-ONLY PROBLEM

In order to obtain the data in table 1, it was assumed that the orbital elements were known, but

that assumption was used only to simulate data that could be recorded by an observer with full

knowledge of the orbit. A naive observer who is located at a radar station and restricted to measuring
only elevation and azimuth angles (as well as the time of the observations) could record only the sort of

information shown in table 2. The "angles only" problem can now be stated quantitatively as follows:

given the five sets of readings in table 2, isolate the five orbital elements, a, e, _,/, and _ that could

have produced those readings. It will be shown that all of the data of that table are not needed. Indeed,

one can isolate the required orbital elements from the five reading of either t_ and the time or fl and the

time. But listing c_ and fl and the time is redundant. In practice, since all of the reading will be noisy, it

would be prudent to solve the problem twice, with one solution involving t_ and the other solution

involving fl and then to compare the two answers. Although only five readings can be used to produce
the results, these five readings are mathematically precise and thus are "safe." In actual field work, one

would probably take many more readings and compute the elements of the orbits from many sets of five,

then statistically validate the final answers. These considerations will not be pursued in the present
report.

To begin, assume any convenient set of values for a, e, N, I, and o_. It is required only that they

be reasonable. In most cases, some guess can be made about the semi-major axis (for a satellite, require
that a.(l+e) > Ro), the eccentricity (say 0 < e < 1) and the inclination (if the observation station is at
0o,/- > 0o).

One could proceed in the calculations in the following way. Once a set of orbital elements have

been assumed, one can obtain a value of _ from equation (20) for a given time. Equation (21) then

produces the corresponding value off. Once fhas been calculated, obtain p from equation (10) and a

from equation (15). Equation (11) then gives the value of ft. If the guesses about the orbital elements are
exact, then the recorded tabular values of ct and fl will agree with the calculated values of these variables

and the problem is solved.

Another procedure was found to be more convenient, however. Given a starting set of guesses
(a, e, N, I, _), first calculate X0 ..... X3 from equations (26) through (28). Additionally, calculate the

following convenient quantities:

X 4 = sin (_-_o), (56)

X 5 = cos/.cos (@-_o), (57)

X 6 = X4.cos E_+Xs.sin _, (58)



X 7 = X4.sin _--Xs.cOs _,

X 8 = X6.tan fl-X2-sin a ,

X 9 = XT.tan fl-Xysin a ,

Xlo = X8.(Ro/p).sin a.e ,

X11 = 4 (X92+X102) '

where the tabulated values of a are utilized. In the general case [sin (fl) _ 0], obtain _ from:

= tan -1 (X10/X9) ,

and 7/from

or

7/ = sin -1 [(Ro/P).sin a/Xll].

The value of f which corresponds to the given fl must be either

(59)

(60)

(61)

(62)

(63)

(64)

(65)

f = Z-r/, (66)

f = 2n:-(_+r/). (67)

(The decision of which f to use requires some programming logic, governed by continuity.) Once the

value off is obtained, from the inverse of equation (21),

(68)E = 2"tan -1 {_/[(1-e)/(1 +e)].tan (f/2)] } ,

with equation (20) then supply the value of time which corresponds to the chosen set of orbital elements

at the isolated value of true anomaly.

Unless the orbital elements were guessed precisely, the time which has been computed will not

agree with the time which was recorded as a corresponding value to each given a, fl, or the (tx, fl) pair.
What is needed is an iteration scheme which will modify the values of the orbital elements in a

systematic manner until the calculated times agree with the actual times recorded at the observation site
(or the times given by the driver program). Notationally, let Tlo ..... Tso be the "true" times and let

T1 ..... 7"5 be the times which are calculated from equation (16). Denote Ui as

U i = Ti(a,e,_,_,I)-Tio (i=0, ...,4), (69)

and let an "i" subscript denote corresponding time-varying quantities (f, E, etc.).

Suppose that the orbital elements (a, e, D, /, _) differ from the true values of the orbital

elements by amounts Aa, Ae, A_, A/, and A_ (respectively). If these deviations were known precisely,
one would have

(70)Ui(a+Aa, e+Ae, _'+A_, _+A_, I+AI)= O.

10



Theobviousnextstepis to expandtheUi set via Taylor's theory to obtain a Newton iterator:

Ui(a+Aa, e+Ae, I+A/, _+A_, _+A62) = Ui(a, e,I, _, _)+(_ Ui/_a).Aa+(_Ui/3e)

•Ae+(_Ui/_l).AI+(bUi/_og).A_o+(bUi/_o_).Aor2+ ... = 0, (71)

where (i = 0 ..... 4). In matrix notation, with yj as any member of the ordered set of orbital elements

deviations (Aa, Ae, A/, A_, Ao_), and xj and member of the ordered set of orbital elements (a, e,/, _,
o_), equation (71) becomes:

(Ui) T = (_Ui/_xj).(yj) T (i = 0 ..... 4), (j = 0 .... ,4). (72)

Unless I(oui/oxj) l =0, one can solve for

(yjf = (_Ui/_xj) -1 "(Ui)r. (73)

The values of a, e, I, zo, and _ can now be modified by the substitutions

a --->a+Aa

e --->e+Ae

I--_ I+_d

m _ m+A_

(74)

o'2--->o<Z+Ao<Z

If the new values of the orbital elements do not drive all of the U i values to zero, the process can
be continued until convergence is achieved.

One still needs to obtain the derivatives of each of the Ui with respect to each of the orbital

elements, i.e., the matrix elements of bUi/3xj. Temporarily suppressing the "i" subscript, it is convenient
to proceed through a "chain calculation" as:

OU/_a = (3/2)-(af(_.(_-e.sin _)+ (_/.t) (1-e-cos _)'_F_J_a

= (aqr(_.[(3/2).(/3-e.sin _)+a-(1-e-cos _)._F_J_a], (75)

_U/be = (_/_/t).[(1-e.cos E).3F_,/be], (76)

_UI_Uo = _. [( 1-e.cos _)._], (77)

OUIb_ = (_/_t).[(l-e-cos/3)'_F_Jb_], (78)

U/_I = (_/z).[(1-e.cos/_)._F_J0I]. (79)
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Fromequation(68):

_F_J_a= (r/a)._f/_a ,

_F_Jbe= [r/_l[(bf/be)/a-sin f/p],

_ FJ_o) = (rla)._ f l_),

aEja_ = (r/a).af/a_,

_FJ_I = (r/a)._f/_I.

One will also need the derivatives of _ from equation (64) and r/from equation (65):

_rl -[R o. sin a]. (a._X 11/_a+X11)

= [a'Xll. _/(aZ.(1-eZ)Z.x_l-[Ro .sin (oo]e)] '

(80)

(81)

(82)

(83)

(84)

(85)

OrI { [Ro. sin O_]/[X11 ..(I-e2)] }. { 2.e.X 11-(1-e2).OX11/De]

= 4(aE.(l_eE)E.x21_[Ro.sin (O_)] 2)] } '
(86)

OrI/Ox = ([Ro.sin a ][X 11).bX1 l/_X)/4 (a2.(1-e2)2.Xtl2[Ro.sin a ]2) ],

where x = I, zo, or _. For the derivatives of _, one has

_[_X = [X9"(_X 10/Ox)-X lO.(_X9[_x)][[XqE+X 10 2]

(for x any orbital element).

-" [X 9" (OX 1o/Ox)-X 1O"(OX9/_x)]/X 112 '

(87)

Using the given expression of f, equation (66), one is now in a position
derivatives off from, say:

Of l_x = O_ /_x--_rl /Ox.

(88)

to calculate the

(90)

(91)

(92)

(93)

12

aXo/OO_ =-sin (_-0o).cos 0o ,

aXo/aX= o, (x o2),

_XIIM = -sin/.sin (_-g).cos 0o -cos/.sin 0o ,

bXllbO_ = cos l.cos(_-Oo ).cos 0o ,

The next task is to calculate the derivatives for X0 ..... Xll. These follow (with x as a generic
orbital element):

(89)



OSl[_X -- 0, (x - a, e, or _),

_X2/Ox = (OXo/OX).cos Uo--(OXffOx).sin _, (x _ _),

_X2/O_o - (OXo/Ot_)'cos _--(OX1/O_)'sin _-Xo-sin _--X 1.cos _,

OX3/_x - (OXo/OX)'sin Uo-(OX1/Ox).cos _, (x _ _),

_X3/_9 = (OXo/_).sin _-(OXffO_).cos E_-Xo.cos _o-X 1.sin E_,

_S4[_oC_ = cos (o_-_o),

_Xa]_X = 0, (x _: oct),

_Xs/_I = -sin/.cos (o_-_),

_Xs/_ _ = --cos/.sin (o_-_),

OXs/Ox = 0 (x -_ I, x _ _),

OX6/Ox = (OX4/Ox).cos _'+(OXs/Ox).sin _0, (x _ _),

OX6/O_o = (OX4/O_).cos _-(OXs/O_).sin _-Xa.sin _-Xs.cos _,

OXT/_X = (OXa/OX).sin _--(OXs/Ox).cos _0, (x _ _),

OX7/O_ = (OXa/O_).sin _--(OXs/O_)-cos _,+Xa.cos _+Xs.sin _ ,

OX8/Ox = (OX6/Ox).tan fl-(OX2/Ox).sin a,

OX9/Ox = (OXT/Ox).tan fl-(OX3/Ox).sin a,

aX 1o/aX = axs/ax, (x _ e),

axlo/ae = aX8/ae+Ro.sin a,

aX 1flax = [X9.(aX9/ax)+Xlo.(aXlo/aX) ][Xl l .

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(lO8)

(109)

(1lO)

(111)

(112)

If the program utilizes both the t_ and fl table, the development is now complete. Once the orbital

elements have been chosen, we can obtain the derivatives of X0,..., Xll with respect to (a, e, _, I, _)

each orbital element from equations (90) through (112). Given these derivatives, use equations (85)

through (88) to obtain the derivatives of 7/and _ with respect to the orbital elements, and subsequently,
the derivatives off with respect to the same variables. That allows a computation of the derivatives of e

(equations (80) though (84)) and finally the derivatives of U from equations (75) through (79). This

yields the derivatives of a five-dimensional vector, say (OUo/Ox). The process is repeated for each of the

other data sets (ai, fli, Ti), to construct the matrix shown in equation (72). Matrix manipulation then
yields the corrections to the orbital elements from equation(s) (74).
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If the informationon theazimuth,a (or fl), is not used, the situation is more complicated since a

must be taken as another variable and equations (60), (61) and (62) must account for the fact that a is

defined in terms of the assumed orbital elements. From equation (11), one can use equations (58) and

(59) to write

while equation (10) becomes

sin tr = r.(X6.cos f-X7.sin f)/(p .cos fl ), (113)

p = _/[r2+R2-2.r.Ro.(X2.cos f-X3.sin f)]. (114)

Equations (107) through (111) would be modified to read:

OX8/Ox = (OX6/Ox).tan fl -(OX2/Ox).sin a-X2.cos tz .Oct/Ox, (115)

OX9/Ox = (OX71Ox).tan fl -(OX3/Ox).sin a-X3.cos a.0a/0x, (116)

OXlolOx = OX81Ox+Rolp).cos ot.Oa/Ox (x _ e), (117)

OXlo/Oe = OXs/Oe +Ro.sin a +(Ro/p).cos a.Oa/Ox (x = e). (118)

From equation (114) comes

Op /Ox = {(r-Ro).Or/Ox-r.Ro.[COS f .(OX2/Ox-X3"O f /Ox)

- sin f.(OXa/Ox+X2.0f/Ox] }/p, (119)

which is needed to evaluate 0_0x; from equation (113) one obtains both

cos tz.Occ/Ox = {Or/Ox.(X6.cos f-XTsin f)+r.[(OX6/OX-XTOf/Ox)'cos f

-(X6.0f/Ox+OX7/Ox).sin f] }/(/9 .cos fl )-r.(X6.cos f-XTsin f).Op/Ot/(p 2.cos fl ), (120)
and

cos o¢ = 4[P 2"c°s2 fl -r2"(X6 "c°s f-XT"sin f)2]/(/9, cos fl ). (121)

In order to take the derivatives of tz with respect to each orbital element, one would also need the

derivatives of r with respect to the same variables. Using equation (19), one finds

Or/Oa = 1-e-cos E+a.e-sin E.OF_./Oa, (122)

Or/Oe = a.cos E+a.e.sin E.0F_./0e . (123)

Using equations (115) through (123) allows the measured values for tz to be ignored, but

ignoring the measured values is paid for with the need for increased computation. Similar comments are
applicable to the case where tabular values of c¢ are assumed to be known but fl is treated as a

computable quantity. In the numerical results that are presented in the next section, tabular values of
both a and fl were assumed to be known.
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NUMERICAL RESULTS

The above theory was programmed in COMMON LISP on a Symbolics 6370. That platform

allows for rapid prototyping and ease of equation development. The entire set of equations performed

quite well; the Newton iteration scheme can converge a correct set of orbital elements from rather bad

guesses.

There has been an implicit assumption that there is a unique set of orbital elements which will
produce the given table of observations. Although no attempt was made to establish uniqueness, one

case was inadvertently found where the solution was not mathematically unique, but the extraneous

solution did not correspond to a physically realistic orbit. Specifically, for the inputs of a, 13, and time

from a two-dimensional suborbital case (with true a = 6,018.739, e = 0.724, _ = 225, I = 0, and o_ = 0),

started from a rather precise initial set of guesses that assumed a = 6,020, e = 0.5, _ = 350, I=0, _ = 0.

The convergence criteria was met with a = 9,666.27930, e = -0.17980, _ = -25.54499, I = 0, and _ = 0.

This is not a physically realistic orbit (e < 0, a > 0), however, and is easily eliminated by requiring that

e > 0. Additional constraints should be added to the iteration scheme, i.e., require that a.(l+e) > Ro,

-_z/2 < I < n:/2, and 0 < _ < n:. In the case of tracking a comet or an asteroid (which are usually elliptical

with respect to the Sun but hyperbolic with respect to the Earth), alternative constraints obviously would
have to be used.

In regard to two-dimensional iterations, in general, note that the convergence scheme is valid for

those cases provided that the reduced dimension of the iteration space is accounted for. A three-

dimensional iteration, faced with a two-dimensional problem, will encounter a singular matrix unless

precautions are taken. Furthermore, when a two-dimensional problem is undertaken, one must take

= 3zr/2 due to the choice of the coordinate system.

During the computation procedure, the equation for 7/, equation (31), was particularly

treacherous in that it is rather easy for (Rolp).sin oe/X11 to underflow or overflow from the range

-1 < sin -l < 1 and produce complex values for o_ The LISP language easily handled the complex values,

but it balked at attempting to double-float the results. This was handled by the crude, though effective,

artifice of simply setting o_ to either 3n:/2 or n:/2 depending upon the direction in which the insult

occurred. As the iteration scheme approached more accurate values of the orbital elements, the problem
disappeared. Iteration to isolate a satellite orbit tends to monotone convergence, but isolation of very

short range missiles (-200 km) becomes extremely difficult since the trajectories have eccentricities that

approach unity. For those cases, the Newton iteration, as presented here, is virtually inapplicable.

Another difficulty, often present in Newtonian iteration schemes, was that the corrections For Aa,

Ae, A_, A/and A_ were often so large that the iteration scheme began to wander aimlessly. Two

methods were used to circumvent this problem. One option measured the magnitude of the errors and

adjusted a "creep factor" according to the size of the errors. Another scheme placed absolute bounds on

the allowable changes that could be made by any variable in a given iteration. This report was written to

demonstrate a new approach to the angles-only problem, so no attempt was made to develop an optimal

iteration scheme. Since the angles-only problem is important in the real world, it is expected that specific
iteration schemes to optimize convergence may be forthcoming in the future.

Two illustrative examples are given here to demonstrate the use of the equations given earlier. As

mentioned previously, the first of these is a rather standard satellite orbit which is numerically described

in Table 1; the fact that 16 sets of data are recorded is purely arbitrary. A subset of the data displayed in

Table 1 is shown in Table 2. This is the entire set of data sent to the iteration scheme. As explained, the

numerical examples used the values of o_ and 13along the time of the observations, so that neither a nor
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fl were calculated from the other as a part of the study. The iteration scheme converged the proper

elements from the input guesses in 26 iterations (Table 3). Note that the figure of merit for the
convergence (last column, Table 3) is monotone decreasing. The error calculation is defined as

4

Table 4 demonstrates the same data as Table 1, but this time for a suborbital vehicle. The case

was deliberately taken as equatorial so that a two-dimensional iteration could be demonstrated. Since

only three orbital elements (a, e, _ ) need to be isolated, one can make-do with only three readings. For

a two-dimensional case, if the tracking station is located in the plane of the orbit, the azimuth angle, cz, is

meaningless. Thus, only three readings are needed. Again, the end points were fl = 0 or fl = n: were

included, but this is arbitrary. Table 4 shows the results of the iteration scheme from very poor initial
guesses; indeed, the guesses are about as bad as they can meaningfully be. The iteration scheme does not
display monotone convergence and appears to wander aimless for 61 of the 107 iterations that were

needed to converge the case.

An attempt was made to further stress the iteration scheme by requesting an isolation of the 200-

km range suborbital planar case, but convergence was never attained. Certainly, the minimal Newton
iteration presented here can be strengthened by any of several known methods.

CONCLUSIONS

The preceding theory has derived another solution to the "angles-only" problem. This method,

possibly used in conjunction with the alternative methods covered in reference 1, has the potential to

decrease the amount of hardware that is currently required for rendezvous and missile tracking.

The numerical work that is presented demonstrates that the theory yields a practical scheme that

actually solves the problem. Unfortunately, it also indicates that additional research is required to extend
numerical convergence to eccentricities which are very close to unity.

A planned future paper will relax the requirement of an Earth-fixed observer and treat the case of
an observer in an orbiting satellite.
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Table1. First example.
SEMI-MRJOR RXlS (R)=7428. KM, ECC=.IBSB8 IMC(I)=35.888 BEG., flRG. PERIGEE(_)=25.888 DEG., LOHG. RSC. HODE(_)=33.888 DEG.

RPPRRITIOH OCCURS RT f=8.481 de9. [T=122.154 sec.] RHD OCCULTRTIOH OCCURS RT f=58.389 des. [T=748.883 sec.]

TRUE RMOMOLYm DEG. RADIUS, KM. RANGE, KM. ECC. RHOHOLY, DEG. TIME, SEC.

0 f=8.48133688 r=6684.64683564 p=2881.48179857 _-=?.67428293 T=122.15382475
i f=11.33937828 r=6689.87187827 p=1782.55541086 _=18.26292799 T=163.40242366
2 f=14.19238929 r=6696.58128891 p=1486.84597518 E.=12.84934444 T=284.65182256

3 f=17.83891388 r=6784.75468983 p=1117.35985988 _=15.43288791 T=245.89962147

4 f=19.87797554 P=6714.36839848 p=841.82426446 _=18.81388611 T=287.14822837

5 r=22.7083219B r=6725.39478844 P=596.64983616 _=28.58916184 T=328.39681928

6 f=25.52882218 r=6737.88216987 p=448.75B76886 _=23.16883897 T=369.64541818

? F=28.33839858 r=6751.55569755 p=478.56898382 _=25.72751237 T=418.89481788

8 f=31.13599196 r=6766.61683174 p=668.49278487 _=28.28872158 T=452.14261599

9 f=33.92864421 r=6782.94395898 p=914.98251289 E-=38.84399635 T=493.39121489

18 £=36.69142178 r=6888.49251644 p=1192.33738686 _=33.3928971? T=534.63981388

11 £=39.44745811 r=6819.21532193 p=1479.83113168 _=35.935@0846 T=575.88841278

12 f=42.18794762 r=6839.86274951 p=1769.64478692 _-=38.46993949 T=617.13781161

13 F=44.91214716 r=6859.98382993 p=2861.78819529 _=48.59732514 T=658.38561851

14 £=47.61937693 P=6881.92258357 p=2353.86387735 _=43.51682652 T=699.63428942

15 f=58.38982895 r=6984.82588883 p=2645.32323647 _=46.82813134 T=748.88288832

RZIMUTH, DEG. ELEVRTIOH, DEG. LONGITUDE, DEG. LRTITUDE, DEG. LOMGITUE (RRDRR) DEG.

0 a=-58.15883437 _=-.88888113 _=61.44889848 0=-18.44669388 _s=77.88888888

1 .=-57.88645798 _=3.18616678 _=64.87291615 0=-19.86978746 _s=??.17186916

2 .=-55.8411842? _=6.99699965 _=-66.73988244 0=-21.25119328 _s=77.34373832

3 ,=-52.?1266671 _=12.25898824 _=-69.44867889 0=-22.58786924 _s=??.51568749

4 ,=-48.88953651 _=20.15528687 ¢=-72.28319892 0=-23.8?32?468 _=??.68747665

5 a=-37.56514368 _=33.45888818 ¢=-75.88388642 0=-25.18579627 _s=77.85934581

6 .=-4.22828134 _=53.59866411 ¢=-??.84862649 (}=-26.28869784 @s=78.83121497

? a=64.33158348 B=128.72817848 ¢=-88.73965749 0=-2?.894153?5 _s=78.29388413

8 ,=98.55732782 _=146.32232990 ¢=83.67519231 0=-28.44248594 _s=78.37495338

9 ,=99.368?859? _=157.36821261 _=-86.65367667 0=29.42228398 ¢s=78.54682246

18 u=183.52861532 fl=164.18876975 _=-89.67287325 0=-38.33884?62 _s=78.71869162

11 a=185.98245379 _=168.89852738 ¢=92.72983999 0=-31.16383874 _s=78.89856078

12 ,=187.42823026 _=172.45952834 ¢=-95.82892612 0=-31.91948556 _=79.86242995

13 u=I@8.47838717 _=I75.35471125 ¢=98.94178883 0=32.59418553 _s=79.23429911

14 o=189.23785338 _=177.82162762 _=-182.88743269 0=33.18798516 _s=79.48616827

15 u=189.88439856 _=179.99999761 _=-185.25227275 6_-33.69865517 _s=79.57883743

Table 2. Representative data of entire package sent to iterator.

(_ _o. &, O_ Re RSSU_ED KHOMH)

T=122.15382475 8 a=-58.15893437 ¢=-.89888113
T=276.83687864 1 a=-49.49765192 _=17.81025854
T=431.51831654 2 ==81.48848583 _=41.79462783
T=586.28856243 3 ,=186.34412297 _=169.86594977

T=748.88288832 4 a=189.88439856 _=179.99999761

Table 3. Results of iteration scheme.

ORIGIHRL GUESSES: R=7888.88888 k_ Ecc=.88888 I0=27.88888 d89_=.88888 d89/_=-.88888 de9

ITERRTIOH #0 R=6997.11928 k_ Ecc=.88153 (,=88.78312 de9 I0=27.63889

ITERRTIOH #1 R=6976.37418 k_ Ecc=.81593 (_=84.53338 de9 I0=34.23148

ITERRTIOH #2 R=6984.14688 k_ Ecc=.82578_=84.38858 de9 Io=34.72687
ITERRTIOH #3 R=7881.23236 k, Ecc=.83438 _=85.26828 de9 I0=35.26693

ITERRTIOH #4 R=7823.14477 k_ Ecc=.@4188_)=86.72678 de9 I0=35.64329

ITERRTIOH #5 R=7847.51661 k, Ecc=.84841 (_=88.35383 de9 I0=35.86671

ITERRTIOH #6 R=7872.88632 k, Ecc=.85411 (_=89.97658 de9 I0=35.97578

ITERRTIO, #? R=7898.31449 k_ Ecc=.85918 (_=11.51927 de9 Ie=36.88527

ITERRTIOH #8 R=7168.51885 k_ Ecc=.87818 _=15.98418 de9 lo=35.94827
ITERRTIOH #9 R=7212.@8151 kn Ecc=.87731 _=17.84513 de9 lo=35.62486

ITERRTIOH #18 R=7254.11223 k_ Ecc=.88249 _=19.81318 de9 Io=35.33142
ITERRTIOH #11 R=7288.44822 k8 Ecc=.88623_=21.28248 de9 Io=35.13819

ITERRTIOH #12 R=7316.43888 kn Ecc=.88921 _)=22.19628 deo I0=35.82999

ITERRTIOH #13 R=7339.12253 k, Ec0=.89158 w=22.91851 de9 I0=34.97731
ITERRTIOH #14 R=7357.31_88 k, Ecc=.89347_)=23.44948 de9 I0=34.95647

ITERRTIOH #15 R=7371.75187 k, Ecc=.89497 _=23.84247 de8 I0=34.95223

ITERRTIOH #16 R=7394.4_?75 kn Ecc=.89732 _;=24.42_89 de9 lo=34.95924

ITERRTIOH #17 R=7486.78486 k, Ecc=.89861 _=24.71584 de9 Io=34.97549

ITERRTIOH #18 R=7413.29293 ke Ecc=.89929 u_=24.85799 de9 Io=34.98695
ITERRTIOM #19 R=7416.62822 k_ Ecc=.89964 _=24.92917 de9 I0=34.99342

ITERRTIOH #28 R=7418.31322 k_ Ecc=.99982 _=24.96465 de9 I o=34.99676

ITERRTIOH #21 R=7418.15825 k_ Ecc=.89991 _o=24.98236 de9 10=34.99843

ITERRTIOH #22 R=7419.58849 k_ Ecc=.89995¢,,_-24.99119 de9 10=34.99924
ITERRTIOH #23 R=7428.88172 kn Ecc=.18888

ITERRTIOH _24 R=7428.98825 kn Ecc=.18888
ITERRTIOH #25 R=7428.88826 k8 Ecc=.18888

ITERRTIOH #26 R=7429.88926 kn Ecc=.18888

d89_=359.66414 de9 _[SU_ (ERRORS)"I=2889.6363854?

d89-c_'-888.18478 de9 _[SUH (ERRORS)=]=1989.44887953

des Ft=885.38348 de9 _[SUH (ERRORS)l]=1?84.38?664?8

de9Dt=-889.82111 de9 _[SU, (ERRORS)=]=1605.8?646?48

deoD=-811.?3783 de9 _[SUM (ERRORS)=]=1445.B2945689
de9Ft=-813.91888 de9 _[SU" (ERRORS)=]=1388.14138118

des D=-815.?5416 de9 _[SU, (ERRORS)¢]=1169.?8535455

degFt=-817.35192 des _[SUM (ERRORS)¢]=1852.31412419

de9Dm828.98512 de9 _[SU_ (ERRORS)el=8946.6?896598
da9Q=823.55637 de9 _[SUH (ERRORS)e]=8?88.35888592

d89/_--@25.69427 de9 _[SUH (ERRORS)¢]=8538.82498398

deg_t=-827.41842 de9 _[SUM (ERRORS)C]=8396.6898284?
d89_--828.75886 de9 _[SUM (ERRORS)=]=829G.88699278

d89_--829.79734 de9 _[SU" (ERRORS)=]=8222.14316318

de9Ft=-838.58963 de9 I[SUM (ERRORS)=]=0166.27911558

de9Ft=831.18958 de9 _[SUM (ERRORS)¢]=8124.47395496
d89_'_=-832.89412 de9 _[SUM (ERRORS)=]=8893.18528845

des_t=932.54899 de9 _[SUM (ERRORS)=]=8846.38368731

de9/_=-832.?7596 de9 _[SUM (ERRORS)=]=8823.82318822

degFt=832.88883 de9 _[SUH (ERRORS)=_=8811.45162358
des Ft=-832.94487 de9 _[SUM (ERRORS)=]=8885.68?88321

degFt=832.97267 de9 _[SUM (ERRORS)el=g882.83453385
de9Ft=832.98645 de9 _[SUM (ERRORS)=]=9881.41837319

_=25.88881 de9 I0=35.88883desFt=-833.88812 de9 _[SUM (ERRORS)_]=9888.?8177748

_=25.88888 de9 Io=35.88888 de9_t=-833.88888 de9 _[SUM (ERRORS)=]=8888.88353182

_)=25.88888 de9 I0=35.88888 de9 _=-833.88888 deg _[SUH (ERRORS)I]=8888.88881948
¢_=25.08889 de9 I0=35.88888 de9 _'_=-833.88888 de9 _[SU, (ERRORS)=]=S988.@8888818

COHUERGED SOLUTIOH: R=7428.88826 km Ecc=.18888 I0=35.98888 de9 _=25.88888 des /_=-33.98888 de9
_[SUR (ERRORS)=]=.98888818
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Table 4. Second example.
SEMI-MRJOR #HIS (R)=6819. KM, ECC=.72428 IMC(I)=.888 DES., fiRS. PERIGEE(_)=225.800 DEG., LONG. RSC. HODE(_)=.gSG DES.

RPPRRITIOH OCCURS RT f=154.991 des. [T=1120.749 sec.] RMD OCCULTRTIOM OCCURS RT f=219.129 de9. [7=3932.685 sec.]

TRUE RHOMOLY, DES. RRDIUS, KH. RRNSE, KM. ECC. RNOMOLY, DEG. TIME, SEC.

B r=154.99856464 P=832?.g391?T18 p=5353.56799812 &=121.97277148 T=1128.74879814
1 f=159.84812332 r=8948.38481138 p=5316.69888146 _=182.88228159 T=1388.29587948

2 f=164.13718554 r=9434.24859567 p=5381.21856239 _=141.58258833 T=1495.66296882

3 f=168.84348171 r=9818.44838287 p=5278.16143365 _-=158.64963478 T=1683.12885817

4 f=171.69298862 r=18899.63885244 p=5226.61914198 _=159.41388293 T=1878.57714751

5 f=175.17886718 r=18_82.48382165 p=5131.41885411 _=167.97978649 T=2858.03423685

6 r=I78.57269911 r=18369.54893382 p=4981.28243176 _=176.43164178 T=2245.49132628

f=181.94118337 r:18362.37915844 p:476?.lR213487 _=184.85198369 T=2432.94841554

8 f=185.34538128 r=18268.78748541 p=4481.69994818 _,=193.31671198 T=2628.40558488

9 f=188.85839718 r=18863.25851839 p=4118.58129878 _,=281.90596867 T=2887.86259422

18 f:192.53242283 r=9766.78455542 p=3671.85978114 _=218.78915Q95 T=2995.31968357

11 f=196.48778574 r=9366.28463255 p=3187.99737918 _,=219.83291254 T=3182.?7677291

12 f=288.84937183 r=8854.87299328 p=2519.68614328 _=229.41318822 T=3378.23386225

13 f:285.81589888 r=B222.35862738 p:1846.25538555 _,=239.63526416 T=3557.69895168

14 f=211._1283239 r:7454.43313428 p=1281.26945377 _=25R.?7188362 T=3745.14804894

15 £=219.12843774 r=6538.64834918 p=1483.73789664 _=263.25619535 T=3932.SGSI3828

ELEURTIONo DEG. LONGITUDE, DEG. LRTITUDE, DEG. LONGITUE (RRDRR) DEG.

3=.00000600 _=-19.99856464 E_-.SSOOBBBG _=68.00000080

3=9.31971328 _=-24.84812332 EP=-.88808888 _=68.78107121

]=17.40117751 _=-29.13710554 O=-.SSOBGSGO _=61.56214241

3=24.44702159 _=-33.04340171 0=.08000088 _=62.34321362

3=38.66881485 _=-36.69298062 O=-.OSgGSGOG _=63.12428482

3=36.26378188 _=-48.1788671G 0=-.88088088 _=63.98535603

_=41.41969757 _=-43.57269911 (}=-.gg888888 _=64.68642723

I=46.31688587 _=46.94118337 (}=-.88888088 _s=65.46749844

I=51.14592534 _=58.34538128 _=-.888888S8 _s=66.24856964

_=56.14476239 _=-53.85839_10 (}=-.G888S888 _s=67.82964885

I=61.66664772 _=-57.53242283 _=-.88888888 _=67.81_?1286

I=68.3379_782 _=-61.48778574 _=-.8888888G _s=68.58178326

I=??.52662548 _=-65.84937183 (}=-.8888_008 _=69.37285447

I=87.05064752 _=-78.B1589808 _=-.08088808 _=70.15392567

I=125.84723511 _=-76.71203239 0=.80800880 _s=78.93499688

I=179.99998791 _=-84.12843774 _=-.00888080 _s=71.71606888

Table 5. Representative data of entire package sent to iterator.
(H, _o, &, Go, Ro RSSUMED KNOWN)

T:1128.74879814 ¢:._08SGSG_

T=2526.67696821 _=48.72566711

T=3932.68513828 F=179.99998791

Table 6. Results of iteration scheme.
ORISINRL

1TERRTIOH #8:R=6377.82547 kB Ecc=.g1888 _,=246.53286 de9

ITERRTION #1:R=6377.65893 k_ Ecc=.11888 _)=275.73814 de9

ITERRTIOH #2:R=6377.47648 km Ecc=.21988 (o=243.58558 de9
ITERRTIOH #3:R=6377.3_187 k. Ecc=.31988 ¢_=214.12491 de9

ITERRTION #4:R=63F?.47648 k_ Ecc=.41888 _'=258.37484 de9

ITERRTIOH #5:R=6377.38187 kB Ecc=.51888 ¢_=119.31538 de9

ITERRTION #6:R=6377.47648 k_ Ecc=.41888 ¢_=161.91792 de9
ITERRTIOH #?: R=6377,30187 k_ Ecc=.Slgg8 o=143.56112 de9

ITERRTIOH #8:R=6377.47648 k. Ecc=.21888 _=882.73382 de9

ITERRTION #9:R=6377.65993 k_ Ecc=.11898 _=182.47898 de9

ITERRTIOH #18:R=6377.82547 km Ecc=.glgE8 o=218.38686 de9
ITERRTIOH #11:R=6377.65_93 k, Ecc=.11880 o=8?6.92424 de9

ITERRTIOH #12:R=6377.82547 k, Ecc=.O1888w=868.98440 de9

ITERRTIOH #13:R=6377.65893 k_ Ecc=.11808 _=118.29898 de9
ITERRTION #14:R=6377.82547 kn Ecc=.81888 (,=133.66279 de9

ITERRTION #15:R=6378.88888 k_ Ecc=.81808 _=118.56111 de9

ITERRTION #16:R=6378.88808 k_ Ecc=.81800 _=228.78121 de9

ITERRTION #17:R=6377.82547 k_ Ecc=.11088 _=336.81249 de9

ITERRTIOH #18:R=6378.88888 ke Ecc=.81888 _=856.21268 de9

ITERRTION #19:R=6377.82547 k_ Ecc=.11888 _=836.52698 de9

ITERRTION fl28:R=6378.80880 k_ Ecc=.81088 _=187.39983 de9

ITERRTIOH #21:R=6378.89888 k_ Ecc=.81888 _.'=238.21842 de9

ITERRTION #22:R=6377.82547 k_ Ecc=.11889 (.=89?.93358 de9

ITERRTIOH #23:R=6376.88888 k_ Ecc=.81888 _:,=262.73277 de9
ITERRTIOH #24:R=6378.88888 k_ Ecc=.81888 (.'=837.54403 de9

ITERRTION #25:R=6378.88088 k_ Ecc=.81898 ¢,_=874.54386 de9

ITERRTION #26:R=6378.88898 kn Ecc=.81888 _=274.77163 des

ITERRTIOH #27:R=6378.88088 km Ecc=.81888 _=847.88174 de9
ITERRTIOH #28:R=6378.g0888 km Ecc=.e1888 _=322.64812 de9

ITERRTION fl29:R=6378._8800 k_ Ecc=.91888 (o=862.38489 des

ITERRTION #30:R=6377.82547 kn Ecc=.11888 (_=116,39484 de9

ITERRTIOH #31:R=6378.08888 k, Ecc=.01888 _=859.87265 de9

ITERRTION #32:R=6377.82547 km Ecc=.11888 _=354.23826 de9

ITERRTIOH #33:R=6378.08800 kn Ecc=.81800 ¢_=326.15469 de9

ITERRTION #34:R=6378.88088 ke Ecc=.01880 t_=828.42436 de9
ITERRTION #35:R=6378.88880 km Ecc=,g1888 _=252.93388 de9

GUESSES: R=6378.88_88 k_ Ecc=.88888 I o=.88888 de9 _=.88888 des /_=-.88888 des

/[SUM (ERRORS)=]=3342.253?2398

/[SUM (ERRORS)=]=1?8?.9818446?

/[SUM (ERRORS)=]=1563.56658865

I[SUM (ERRORS)=]=8967.94274841
I[SUN (ERRORS)=]=1218.41828986

_[SUH (ERRORS)=]=e862.33919423

_[SUM (ERRORS)e]=423?.85568?53

_[SUM (ERRORS)=]=3587.49167198

I[SUM (ERRORS)e]=3382.12313582

/[SUM (ERRORS)=]=3642.?5353697
_[SUH (ERRORS)=]=3958.24358289

t[SUM (ERRORS)=]=1658.S8353792

/[SUN (ERRORS)=]=41?5.969236?8
_[SUH (ERRORS)=]=5569.?4171218

I[SUH (ERRORS)=]=3983,968?5415

_[SUM (ERRORS)=]=3621.66578198
_[SUh (ERRORS)=]=3759.25858461

I[SUM (ERRORS)=]=1828.42876589

I[SUH (ERRORS)=]=3184.59657251

I[SUN (ERRORS)=]=4543.885?4484

_[SUM (ERRORS)=]=4167.53932133
I[SUM (ERRORS)=]=3783.94734648

_[SU_ (ERRORS)=]=l?56.34696722

_[SUM (ERRORS)=]=3991.99814982

I[SUM (ERRGRS)=]=l?58.89479345
I[SUM (ERRORS)=]=4138.43426753

I[SUN (ERRORS)=]=4115.06597338

I[SUH (ERRORS)=]=1855.81818369

/[SUM (ERRORS)=]=4368.17724884

I[SUH (ERRORS)a]=2?85.93322268

_[SUH (ERRORS)=]=5573.56804375
I[SUM (ERRORS)=]=3864.88321219

_[SUM (ERRORS)=]=4686.?1288298

I[SUM (ERRORS)=]=3371.?8846483
?[SUM (ERRORS)t]=2762.87198362

?[SUM (ERRORS)=]=394S.68348811
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ITERRTIOM

ITERBTIOH #87:R=63??.B2547 kn

ITERRTIOH #38:R=6378.BBB88 kn

ITERRTION #39:R=6378.88088 kn

ITERRTIOH #40:R=63??.82547 kn

ITERflTIOH #41:R=63?8.8B888 kn

ITERRTIOH #42:R=6378.B8888 kn
ITERRTIOH #43:R=6378.80080 kn

ITERRTIOH .44: R=63?B.SBBSB kn

ITERRTIO. #45:R=6378.00889 kn

ITERRTIOH #46:R=6377.82547 kn

ITERRTIOH #47:fl=6378.8_800 kn
ITERRTIOH "48:R=6378.88888 kn

ITERRTIOH #49:R=6378.88888 kn

ITERRTIOH #58:R=6378.90808 kn
ITERRTIOH #51:fl=6377.82547 kn

ITERRTIOH #52:R=6378.80808 kn

ITERRTIOH #53:R=6377.82547 kn

ITERRTIDH #54:R=6377.65993 kn

ITERRTIOH #55:R=6377.47640 kn

ITERRTIOH #56:R=6377.65093 kn

ITERRTIOH #57: R=637?.47640-kn

ITERRTIOH #58:R=6377,38187 kn

ITERRTIOH fl59:R=6377.12734 kn
ITERRTIOH #68:R=6377.88187 kn

ITERRTIOH #61:R=687?.47648 kn

ITERRTIOH #62:R=6277.47648 kn
ITERRTIOH #63:R=6177.47648 kn

ITERRTIOH #64: R=6e??.4764e kn

ITERRTIOH #65:R=68B2.18338 kn

ITERRTIOH #66:R=6822.73748 kn
ZTERRTIOH #6?: R=6816.76933 kn

ITERRTIOH #68:R=6828.10635 kn

ITERRTIOH #69:R=6817.88717 kn
ITERRTIOH #78:R=6819.36574 kn

ITERRTIOH #71:R=6818.32287 kn

ITERRTIOH #72:R=6019.81815 kn
ITERRTIOH #73:R=6818.55427 kn

ITERRTIOH #74:R=6818.86368 kn

ITERRTIOH #?5:R=6818.65724 kn

ITERRTIOH #76:R=6918.79495 kn

ITERRTIOH #77:R=6818.78388 kn
ITERRTIOH #78:R=6818.76437 kn

ITERRTIOH #?9:R=6818.72348 kn

ITERRTIOM #88:R=6818.75875 kn

ITERRTIOM #81:R=6918.73256 kn

ITERflTIOM #82= R=6818.74478 kn
ITERRTIOM #83: R=681R.?366B kn

ITERRTZOM #84:R=6018.74288 kn

ITERRTION #85:R=6818.73849 kn
ITERRTION #86:R=6018.74888 kn

ITERRTIOM #8?: R=6818.73928 kn

ITERRTION #88:R=6818.74827 kn

ITERATION #89:R=6818.73955 kn
ITERRTION #98:R=6818.74883 kn

ITERRTIOM #91:R=6818.73971 kn

ITERRTIOH. #92:R=6818.73992 kn

ITERRTION #93:R=6818.73978 kn
ITERRTIOM #94:R=6818.73988

ITERRTI8N #95:R=6818.73981

ITERRTZON #96:R=6818.73986

ITERRTION #97:R=6818.73983

ITERRTION #98:R=6818.73985

ITERRTIOH #99:R=6818.73983

ITERRTION #1g8:R=6818.73984

ITERRTIOM #181:R=GOIB.73984

ITERRTI8H #182:R=6818.73984

ITERRTION #183:R=6818.73984

ITERRTIOM #184:R=6818.73984

ITERRTION #185:R=6818.73984
ITERRTION #186:R=6818.73984

ITERRTIOH #187:R=6818.73984

Table 6. Results of iteration scheme
#36:R=6378.88900 kn Ecc=.81888 o=864.59?55 de9

Ecc=.11888 e=125.81488 de#

Ecc=.81888 _=295.14937 de9

Ecc=,81888 (,_:859.87186 de#

Ecc=.11888 _)=354.26307 de9
Ecc=.81888(_=325.54414 de9

Ecc=.81888 (_=834.58583 de9

Ecc=.81888 ¢,_=132.14684 de#

Ecc=.81888 ¢Lt=121.86298 de#

Ecc=.81888 (_=181.18194 de9
Ecc=.11888(_=894.81288 de9

Ecc=.01888 ¢_=291.13616 de9

Ecc=.81888 o=146.17872 de#
Ecc=.81888_t=343.47329 de9

Ecc=.81888¢_=218.86757 de9

Ecc=.11888 ¢0=855.29646 de#

Ecc=.21888 i,)=848.84146 de#
Ecc=.31888_,_=268.19538 de9

Ecc=.41888 (_=838.99894 de9

Ecc=.31888 _-211.81871 de9

Ecc=.41888 _o=263.74258 de9

Ecc=.51888w=883.88813 de9
Ecc=.61888 _o=312.47459 de#

Ecc=.71888 _=138.56418 de9

Ecc=.81888 _=213.83595 de9

Ecc=.75529_,_=225.56888 de9

Ecc=.71739 ¢_=224.33891 de9
Ecc=.71899 o=224.13317 de#

Ecc=.72894 _,>=224.66898 de9

Ecc=.72299(_=224.86827 de9
Ecc=.72463 (,_=225.13766 de9

Ecc=.72419 _0=224.98929 de9
Ecc=.72433 (_=225.85943 de#

Ecc=.72425 (_=224.96852 de9

Ecc=.72438 ¢o=225.82634 de9

Ecc=.72427 _o=224.98242 de9
Ecc=._2429 (.>=225.81173 de9

Ecc=.72427 _o=224.99218 de#

Ecc=.72429 ¢O=225.88522 de9

Ecc=.72428(_=224.99652 de9
Ecc=.72428 (_=225.88232 de#

Ecc=.72428¢o=224.99845 de#

Ecc=.72428(,)=225.88183 de8

Ecc=.72428(._=224.99931 de9

Ecc=.72428 _o=225.88846 de9
Ecc=.72428 0=224.99969 de9

Ecc=.72428_=225.88821 de#

Ecc=.72428(,_=224.99986 de9

Ecc=.72428¢_:225.88889 de9
Ecc=.72428 _-=224.99994 de9

Ecc=.72428_=225.88884 de#

Ecc=.72428_=224.99997 de#
Ecc=.72428_=225.88882 de9

Ecc=.72428 ¢o=224.99999 de9

Ecc=.72428(_=225.98881 des

E00=.72428_=225.88888 de9
Ecc=.72428 _=225.88g88 de#

Ecc=.72428 _=225.88888 de9

kn Ecc=.72428_0=225.88888 de#

kn Ecc=.72428 ¢_=225.88888 de#

kn Ecc=.72428 ¢_=225._8888 de#
kn Ecc=.72428_=225.88888 de9

kn Ecc=.72428_)=225.88888 de9

kn Ecc=.72428_)=225.88888 de#

kn Ecc=.72428 _a=225.888_8 de#

kn Ecc=.72428(_=225.88888 de9
kn Ecc=.72428_=225.88888 de9

k_ Ecc=.72428(,_=225.88888 des

kn Ecc=.72428 _¢=225.88888 de#
kn Ecc=.72428(._=225.88888 de9

kn Ecc=.72428_)=225.08888 de9

kn Ecc=.72428_=225.88888 des

(continued).
_[SUM (ERRORS)=]=1715.94468123

_[SUM (ERRORS)=]=55?9.52889429

_[SUM (ERRORS)=]=3814.22587824

_[SUM (ERRORS)=]=2112.SB?75784

_[SUM (ERRORS)=]=4696.67699BBB

/[SUM (ERRORS)=]=33?2.1?42326?

_[SUM (ERRORS)=]=2?52.92595544
_[SUM (ERRORS)=]=4873.28828556

/[SUM (ERRORS)=]=3628.4B2531B8

/[SUN (ERRORS)=]=3687,l?826436

/[SUN (ERRORS)t]=31?2.68?9??44

/[SUB (ERRORS)C]=4815.96918?52
/[SUM (ERRORS)=]=2853.68258487

/[SUN (ERRORS)=]=3588.61284395

/[SUM (ERRORS)=]=3838.67418247
/[SUM (ERRORS)=]=1845.6584?84?

/[SUM (ERRORS)=]=4523.5#96##91

/[SUN (ERRORS)=]=4415.623544?7

/[SUM (ERRORS)t]=#964.6?445113
/[SUM (ERRORS)=]=4293.981?9?49

_[SUM (ERRORS)=]=1283.33B23873

/[SUM (ERRORS)=]=1811.94406805

/[SUM (ERRORS)=]=4456.22739218

/[SUM (ERRORS)=]=2377.68398719
/[SUM (ERRORS)=]=3887.1B852588

/[SUN (ERRORS)=]=1258.86899995

/[SUM (ERRORS)=]=8460.12395?39

/[SUB (ERRORS)=]=8338.2B472467

/[SUM (ERRORS)=]=8217.4580274B
/[SUH (ERRORS)=]=8888.15488197

/[SUM (ERRORS)=]=8828.362819B4
_[SUM (ERRORS)=]=8888.57612811

/[SUM (ERRORS)=]=9995.34995398

/[SUM (ERRORS)=]=9883.48845386
_[SUM (ERRORS)=]=8882,3248189B

/[SUM (ERRORS)=]=8081.55186925

/[SUM (ERRORS)=]=8881.83537443

/[SUM (ERRORS)=]=8989.69857852

/[SUM (ERRORS)=]=8880.46877383

/[SUM (ERRORS)=]=8888.38?3685?

/[SUM (ERRORS)=]=8888.28586258

/[SUM (ERRORS)t]=S888.136796B1
/[SUN (ERRORS)=]=S888.89126299

/[SUN (ERRORS)_]=e888.86888258

/[SUN (ERRORS)=]=8888.84861689

/[SUM (ERRORS)=]=8888.82?89631

/[SUN (ERRORS)t]=8888.81887675

/[SUN (ERROR5)¢]=8888.81285941
/[SUN (ERRORS)t]=8888.88884516

/[SUN (ERRORS)t]=8888o8853G?12

/[SUM (ERRORS)C]=8888.88358855
/[SUN (ERRORS)=]=8888.88238867

/[SUM (ERRORS)=]=8888.88159355

/[SUN (ERRORS)=]=8888.8B186389
/[SU, (ERRORS)_]=8888.88878922

/[SUM (ERRORS)=]=8888.88847314

/[SUN (ERRORS)_]=8888.S8831564

/[SUN (ERRORS)¢]=8888.8g821857

/[SUM (ERRORS)_]=8888.88814848
/[SUM (ERRORS)_]=8888.88889372

/[SUH (ERRORS)=]=_808.888B6252

/[SUN (ERRORS)=]=8888.88884171

/[6UM (ERRORS)=]=8808.S8882783
/[SUM (ERRORS)¢]=8888.S8881856

/[SUM (ERRORS)=]=8888.88881238

/[SUN (ERRORS)C]=8888.88888826

/[SUN (ERRORS)=]=8888.S8888551
/[SUM (ERRORS)=]=8888.8888836_8

/[SUM (ERRORS)_]=8889.SEe88245

/[SUM (ERROR8)=]=SB88.88888164

/[SUN (ERRORS)=]=8888.88888189
/[SUM (ERRORS)_]=8888.88888873

COMUERGED SOLUTIOM: R=6818.73984 kn Ecc=.72428 1o=.88888 de9 _=225.88808 de9_}=-.BOB88 de#

/[SUM (ERRORS)t]=.888888?3
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Figure 1. Coordinate systems showing azimuth (a) and elevation (fl).
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Figure 2. Orbital elements.
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Figure 3. _ versus time for the example from table 1 (satellite).
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Figure 4. or versus time for the example from table 1 (satellite).
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Figure 5. p versus time for the example from table 1 (satellite).
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Figure 7. p versus time for the example from table 4 (ICBM).
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